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Abstract

In many settings, we would like to make predictions about the local structure of a

problem rather than explicitly trying to learn some global structure. For instance,

given two teams from some set of teams, we may want to know if one team will beat

the other, while we may not be explicitly interested in a ranking of all of the teams.

A recent framework proposed by Christiano (2014a) called “online local learning”

captures this broad class of problems, which includes online max cut and online

gambling.

In the online local learning setting, we receive pairs of items from some set of

items of size n, and we must label them from some set of labels of size l. Christiano

(2014a) provides a Follow-the-Regularized-Leader algorithm using a log determinant

regularizer that obtains regret O(
√
nl3T ). In this thesis, we improve the analysis of

Christiano’s algorithm to obtain regret O(
√
nlT ). We also present a matching lower

bound based on a reduction from the planted clique problem, which is believed to

have no polynomial-time algorithm for planted cliques of size k = o(n1/2). We then

show a similar reduction from the planted dense subgraph problem, which is believed

to be even harder than the planted clique problem. This thesis is a more detailed

treatment of the material from Awasthi et al. (2015), which first showed these results.
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Chapter 1

Introduction

In many real-world problems, decisions need to be made on new data or inputs as

they arrive. For instance, a router directing traffic on a network may need to route

each request through the network as it arrives, while still attempting to keep overall

network congestion low. This is an example of an online problem. The router’s task

would be simpler in the offline case, in which all data is received in advance of making

any decisions. In the offline version of the router problem, the router would see all

future requests before deciding how to route each one, whereas in the online version,

the router must make a decision immediately after receiving each request.

In online learning, a learner plays a series of rounds in which data points are

provided one at a time. In each round, the learner must make some prediction

about the point she receives, after which she receives some bounded loss function

that determines how good her prediction was. In general, the data points and loss

functions are provided adversarially, meaning it would be impossible for the learner to

obtain any meaningful absolute performance guarantees in the worst case. Instead,

we consider some comparison class of hypotheses such that for any given instance

of the online learning problem, at least one of the hypothesis in the class will do
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well. We then try to bound the worst case regret, which is the difference between the

learner’s performance and the performance of the best hypothesis for a given instance

of a problem. Since the data points and loss functions are chosen adversarially in the

online setting, online algorithms have robust bounds on performance, which enables

them to be used as black boxes in other algorithms. Additionally, many classical

algorithms problems have interesting online counterparts.

Much work has been done on online learning problems in the past several decades,

and some surprisingly powerful results have been shown. For instance, when the size

of the comparison class is small, the multiplicative weights algorithm, also called

the experts algorithm, can give optimal regret in polynomial time (Littlestone and

Warmuth, 1994). This algorithm comes from the problem of learning with expert

advice, in which a learner must predict each day whether a stock will go up or down.

The learner has access to a panel of experts, who each make their own predictions

every day. The learner uses this information to make her own prediction, after which

she receives a loss function that reveals the “correct” answer (i.e. whether the stock

went up or down). The game proceeds for T rounds, and the learner’s goal is to

do nearly as well as the best expert over all T rounds, even though the learner

does not know which expert is best until after all of the rounds have finished. If the

number of experts isN , the weighted majority algorithm achieves regretO(
√
T logN).

Moreover, this matches information theoretic lower bounds.

Even though the experts algorithm gives optimal regret, in many cases it is im-

possible to apply it efficiently because the number of experts would be too large or

infinite. One such general setting is the online convex optimization setting. In this

setting, in each round the learner must predict some point in a convex compact body

K, after which she receives a bounded loss function. The learner competes with the

best point over a series of T rounds. For such problems, a powerful efficient meta-
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algorithm exists, called Follow-the-Regularized-Leader (Kalai and Vempala, 2005).

Follow-the-Regularized-Leader encompasses many algorithms, such as some cases of

the experts algorithm and gradient descent, and it provides good regret bounds when

applied with a properly chosen regularizer function. We discuss online convex opti-

mization and the Follow-the-Regularized-Leader algorithm in Section 2.1.

A related setting is that of online local learning, in which the learner needs to make

predictions about local properties of some set of items. Examples of such problems

include online max cut and online gambling. More specifically, the learner receives

pairs of items from some set of items of size N and must label them from some set of

labels of size l over a series of rounds. We compare the learner’s performance to the

performance of the best fixed labeling of the items. The intuition for this setting is

that since in many cases we only need to give answers about pairs of items, we may

be able to find low regret algorithms that do not explicitly compute some consistent

labeling for all of the items, which could be computationally infeasible. Note that the

experts algorithm could give regret O(
√
N log(l)T ) by simply creating lN experts:

one for each possible labeling of the n items. However, such an algorithm would run

in exponential time. The online local learning setting thus tries to capture another

scenario in which the experts algorithm fails.

Christiano (2014a) proposes the online local learning setting and gives an al-

gorithm that obtains regret O(
√
Nl3T ). He uses a Follow-the-Regularized-Leader

approach with a log determinant regularizer. In this thesis, we review the Follow-the-

Regularized-Leader algorithm and the online local learning setting. We then prove

the following regret bound for Christiano’s algorithm:

Theorem 2 (Informal). For online local learning problems with N items and l labels,

there exists an algorithm that achieves O(
√
NlT ) regret.
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We will also prove two lower bounds for online local learning algorithms. We base

them on the hardness of the planted clique and planted dense subgraph problems for

certain parameter regimes. Both of these problems involve distinguishing between an

Erdős-Renyi random graph on n nodes and an Erdős-Renyi random graph on n nodes

that has a particular subgraph randomly planted in it. We then prove the following

theorems:

Theorem 6 (Informal). If there exists a polynomial time online local learning al-

gorithm that achieves O(
√
Nl1−αT ) regret for some 0 < α < 1, then there exists

a polynomial time algorithm to solve the planted clique problem for cliques of size

k = o(
√
n) with probability 4

5
.

Theorem 7 (Informal). If there exists a polynomial time algorithm that obtains regret

O(
√
NlβT ), where β < 1 is some specific function of the parameters of the problem,

then one can solve the planted dense subgraph problem with probability 4
5

in polynomial

time for parameter regimes conjectured to have no polynomial time algorithms.

Finally, we will compare the online local learning setting to a related setting pro-

posed by Hazan et al. (2012) that achieves better regret bounds for certain problems.

We also discuss open problems related to the online local learning setting.
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Chapter 2

Upper bound for online local

learning

In this section, we show how to model online local learning as an online convex opti-

mization problem. This allows us to use the Follow-the-Regularized-Leader algorithm

as a black box, which gives good regret bounds as shown by a theorem from Hazan

(2009). We will use a log determinant regularizer for our algorithm, which is the

same as was used by Christiano (2014a). However, we improve their analysis of the

log determinant regularizer by doing a direct calculation of the Hessian. This leads

us to our upper bound on achievable regret for online local learning.

2.1 Online Convex Optimization and Follow-the-

Regularized-Leader

Online convex optimization (OCO) covers a broad class of problems in online learning.

We follow the OCO framework from Hazan (2009). In that framework, a learner plays

a series of T rounds, where in each round t, the learner outputs some xt from some
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convex compact body K. The learner then receives a loss function ft bounded in

[-1,1] and loss ft(xt). Since the loss functions are adversarially chosen, the optimum

point in each round may shift greatly. As such, we cannot hope to compete against

the best possible point for each round. Instead, we compete with the point x∗ ∈ K

that is the best overall in hindsight, that is:

x∗ = arg min
x∈K

T∑
t=1

ft(x)

The learner seeks to minimize regret, which is the expected difference in loss between

the points she plays {x1, ..., xT} and x∗:

Regret = E

[
T∑
t=1

ft(xt)

]
−

T∑
t=1

ft(x
∗) (2.1.1)

where the expectation is over any randomness that the learner uses.

One powerful meta-algorithm for OCO is Follow-the-Regularized-Leader (FTRL),

shown in Algorithm 1. In each round t, the FTRL algorithm plays the point that

optimizes over the loss functions f1, ..., ft−1 plus an added regularization term R(x)

for some strongly convex function R called a regularizer. The regret for the FTRL

algorithm is given in Theorem 1.

Algorithm 1: Follow-the-Regularized-Leader

Input: η > 0, convex compact body K, strongly convex regularizer R
x1 ← arg minx∈KR(x)
for t← 1 to T do

Play xt
Receive loss ft(xt)
xt+1 ← arg minx∈K

∑t
i=1 fi(x) + 1

η
R(x)

end

6



Theorem 1. (Hazan, 2009) Given a convex compact K and strongly convex regular-

izer R, define

λ = max
t,x∈K

fᵀ
t [∇2R(x)]−1ft , D = max

x1,x2∈K
|R(x1)−R(x2)|

where ∇2R(x) is the Hessian of R(x). Then the FTRL algorithm achieves regret at

most O(
√
λDT ).

The λ parameter in Theorem 1 corresponds to the strong convexity of the regu-

larizer, measured in the norm of the loss functions. If the regularizer is more strongly

convex, λ will be smaller (giving lower regret). The D parameter corresponds to the

range of the regularizer over points in K. We refer the reader to Hazan (2009) for a

full proof of Theorem 1.

The motivation for FTRL comes from some observed shortcomings of the Follow-

The-Leader (FTL) algorithm, which is the same as Algorithm 1, except that we don’t

use a regularizer–that is, that we set xt+1 = arg minx∈K
∑t

i=1 fi(x). Essentially, FTL

follows the estimated “best” solution for each case, based on the past loss functions.

FTL achieves Ω(T/2) regret in the worst case, which occurs when the “best” solution

changes greatly in each round. The regularizer term causes the expression being op-

timized to be strongly convex, intuitively causing the algorithm to change its guesses

more smoothly. Another interpretation for the regularizer is as a “noise” term, which

again prevents the algorithm from switching its answer too dramatically.

2.2 Online local learning

In many online learning problems, the learner’s performance is compared to some

comparison class that represents some global structure in the problem. However, in
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each round, the learner may only need to make predictions about local structure in

the problem. Thus, while it may be intractable to efficiently reconstruct the global

structure, the learner may still achieve low regret by maintaining only local infor-

mation. This idea is the motivation for the online local learning (OLL) setting of

Christiano (2014a).

In the OLL setting, the task is to label pairs of items from some set over a series

of rounds. Formally, we have some set of labels L = {1, ..., l} and some set of items

S = {x1, ..., xn}. In each round, we are presented with a pair of items (xi, xj) ∈ S×S

and are asked to provide some joint distribution pt over L×L, where t is the current

round. We then receive a loss vector ft ∈ [−1, 1]l
2
, and the following loss:

Losst(p) =
∑
a,b∈L

ft(a, b)p(a, b) (2.2.1)

We play this for T rounds. As in the OCO setting, we cannot hope to compete with

the best decision in each round. Instead, we will compete with the best fixed labeling

in hindsight. A fixed labeling Q corresponds to some mapping q : S → L. When

queried with a pair of vertices (xi, xj), Q will play a distribution that has probability

1 on the labels (q(xi), q(xj)) and probability 0 elsewhere. The regret is the difference

between our loss and the loss of the best fixed labeling Q, namely:

Regret =
T∑
t=1

Losst(pt)−
T∑
t=1

Losst(Q) (2.2.2)
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2.3 Label optimal algorithm for online local learn-

ing

Christiano (2014a) models OLL as an OCO problem, which he solves with a FTRL

algorithm. To do this, he considers the convex set K1 of nl× nl positive semidefinite

matrices A indexed by object-label pairs such that all entries of A are nonnegative

and for all xi, xj ∈ S, the following holds:

∑
a,b∈L

A(xi,a),(xj ,b) = 1 (2.3.1)

That is, for all xi, xj ∈ S, the function pxi,xj(a, b) = A(xi,a),(xj ,b) defines a valid prob-

ability distribution.

For a given round t, suppose the learner is provided with objects (xi, xj) ∈ S × S

and the learner plays some A ∈ K. Then the loss vector ft ∈ [−1, 1](nl)
2

is defined to

be zero everywhere except for possibly in the l× l block corresponding to (xi, xj). To

compute the loss, we simply treat A as a vector, which gives the following:

Losst(At) =
∑
a,b

A(xi,a),(xj ,b)ft((xi, a), (xj, b)) (2.3.2)

We will use R(A) = log det(lA+ I) in this section to denote the log determinant

regularizer. This regularizer was chosen because it is the entropy of a Gaussian

whose second-order moments are given by A. The Gaussian is the maximum entropy

distribution whose second-order moments are given by A, so the log determinant of A

gives an upper bound on the entropy of a distribution whose second-order moments

1From this point on, K will refer to the specific body we define here.
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are given by A. Such an entropy function will intuitively maximize how smoothly the

algorithm changes its guesses over the course of the OLL game.

Christiano (2014a) uses this regularizer to solve OLL using FTRL, as shown in

Algorithm 2, achieving a regret bound of O(
√
nl3T ).2 To show this regret, he gives

bounds on the D and λ parameters in Theorem 1. He shows that D ≤ nl and λ ≤ l2.

For completeness, we repeat the proof for the bound on D in Appendix A, where we

also sketch his bound for λ.

Algorithm 2: OLL algorithm using FTRL

Input: η > 0, convex compact body K, strongly convex regularizer R
A(1) ← arg minA∈KR(A)
for t← 1 to T do

Receive (xti, x
t
j)

Predict (a, b) with probability A
(t)

(xti,a),(xtj ,b)

Receive loss function gt over L× L

Set ft((xu, c), (xv, d)) =

{
gt(c, d) if (xu, xv) = (xti, x

t
j)

0 o.w.

A(t+1) ← arg minA∈K
∑t

i=1 fi(A) + 1
η
R(A)

end

We improve the analysis in Christiano (2014a) to show the following:

Theorem 2. Follow-the-regularized leader over K using R(A) as the regularizer

achieves regret O(
√
nlT ).

To prove Theorem 2, we show an improved analysis of the strong convexity pa-

rameter of the regularizer. In particular, we show the following:

Lemma 3. For the log determinant regularizer R over K, we have λ ≤ 4, where

λ = max
t,A

fᵀ
t [∇2R(A)]−1ft

2For convenience of notation, in Algorithm 2 we let f(A) correspond to the dot product between
f and A, where A is treated as an (nl)2 dimensional vector.
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as defined in Theorem 1.

We use the following bound from Christiano (2014a) on D:

Lemma 4. For the log determinant regularizer R over K, we have D ≤ nl, where

D = max
x1,x2∈K

|R(x1)−R(x2)|

as defined in Theorem 1.

Proof of Theorem 2. By Lemma 4, the diameter D for R is at most nl. Then since

λ ≤ 4 by Lemma 3, Theorem 1 gives:

Regret ≤ O(
√
DλT ) = O(

√
nlT ) (2.3.3)

Before we prove Lemma 3, we need the following lemma, which gives the form of

the inverse of the Hessian of R(A). We prove the lemma in Appendix A.

Lemma 5. The inverse Hessian H−1 of the log determinant regularizer has the fol-

lowing form:

H−1
(w,x),(y,z) = −l−2(lA+ I)y,x(lA+ I)w,z

for all x,w, y, z ∈ S × L.

Proof of Lemma 3. We now prove the bound on λ = maxt,A f
ᵀ
t [∇2R(A)]−1ft. We

know that each ft is nonzero in only l2 locations, corresponding to the l × l block of

labels for some pair of items i, j ∈ S. Since each entry of ft is in [−1, 1], it suffices to

11



bound
∑

a,b,c,d∈L |[∇2R(A)]−1
((i,a),(j,b)),((i,c),(j,d))| for all i, j ∈ S. Using Lemma 5, we get:

∑
a,b,c,d∈L

∣∣∣[∇2R(A)]−1
((i,a),(j,b)),((i,c),(j,d))

∣∣∣ =
∑

a,b,c,d∈L

∣∣−l−2(lA+ I)(i,c),(j,b)(lA+ I)(i,a),(j,d)

∣∣
(2.3.4)

=
1

l2

∑
b,c∈L

(lA+ I)(i,c),(j,b)

∑
a,d∈L

(lA+ I)(i,a),(j,d)

(2.3.5)

=
1

l2

(∑
a,b∈L

(lA+ I)(i,a),(j,b)

)2

(2.3.6)

Then we note the following:

∑
a,b∈L

(lA+ I)(i,a),(j,b) = l
∑
a,b∈L

A(i,a),(j,b) +
∑
a,b∈L

I(i,a),(j,b) (2.3.7)

= l + l = 2l (2.3.8)

where we have used (2.3.1) and the definition of the identity. Plugging this into (2.3.6)

gives the lemma.
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Chapter 3

Lower bounds for online local

learning

We provide computational lower bounds for regret in the OLL setting. In particular,

we will show reductions from the planted clique and planted dense subgraph prob-

lems to OLL. Both of these problems are conjectured to have no polynomial time

algorithms, and we present current conjectures on the hardness of each problem, as

well as justifications for the conjectures.

In the OLL setting, one can obtain an information theoretic lower bound by

applying the experts algorithm with one expert for each labeling of n items with l

labels. This will take exponential time and will achieve regret O(
√
n log(l)T ). We

improve this lower bound to show that no polynomial time algorithm can achieve

regret Ω(
√
nl1−αT ) for α > 0, provided that planted clique or planted dense subgraph

have no efficient algorithms for certain parameter regimes.
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3.1 Planted clique

In the planted clique problem, we are given some graph G and must distinguish

whether it is an Erdős-Renyi random graph G(n, 1/2) or an Erdős-Renyi random

graph G(n, 1/2) with a clique of size k planted on a random set of k vertices (i.e. we

add all edges between those vertices). We denote the latter graph by G(n, 1/2, k).

The planted clique problem was first proposed by Jerrum (1992) and Kucera

(1995). Alon et al. (1988) give a simple spectral algorithm to recover a planted clique

for k = Ω(n1/2). Their algorithm considers a set S that consists of the k entries of

largest magnitude of the second eigenvector ν2 of the adjacency matrix. The algorithm

finds all vertices with 3k/4 neighbors in S and outputs those vertices as the planted

clique. The algorithm works because with high probability, ν2 has large magnitude

on many vertices of the planted clique. More recently, Dekel et al. (2014) give a linear

time algorithm for finding cliques of size k = Ω(n1/2).

For planted cliques of size k = o(n1/2), the best known algorithm runs in time

nO(logn), provided that k ≥ 2 log n. The algorithm simply iterates over all subsets of

vertices of size 2 log n. For each subset S that is a clique, the algorithm considers

the set of all vertices that are neighbors with every vertex in S. One of these sets

of vertices will be the planted clique (Feldman et al., 2013a). Given that this is the

state of the art for planted clique algorithms, we have the following conjecture:

Conjecture 1 (Planted clique hardness). Given a graph G sampled either from

G(n, 1/2) or G(n, 1/2, n1/2−ε)) for any ε > 0, there is no polynomial time algorithm

that can decide which ensemble G was sampled from with probability 4
5
.1

Feldman et al. (2013a) show that a broad class of algorithms known as statisti-

cal algorithms, which include many common algorithms such as PCA and k-means,

1The constant is arbitrary and need only be bounded away from 1
2 .
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cannot do better than this bound. Meka et al. (2015) show that a constant num-

ber of rounds of the Sum-Of-Squares hierarchy cannot find a planted clique of size

k = no(1). These results support the use of planted clique as a basis for computa-

tional lower bounds. Planted clique has been used by Alon et al. (2007) as a basis

for hardness for testing k-wise independence near the information theoretic limit and

by Berthet and Rigollet (2013) to prove lower bounds for sparse principal component

detection. Additionally, Hazan and Krauthgamer (2011) show that there is no PTAS

for finding the best Nash equilibrium if finding a planted clique of size Θ(log n) is not

possible in polynomial time.

3.2 Reduction from planted clique to online local

learning

We will reduce the planted clique problem to OLL, showing the following theorem:

Theorem 6. If there exists a polynomial time online local learning algorithm that

achieves O(
√
Nl1−αT ) regret2 for some 0 < α < 1, then there exists a polynomial

time algorithm to distinguish between G(n, 1/2) and G(n, 1/2, k) for k = n1/2−ε and

ε = α
16

with probability 4
5
.

Note that in the limit as ε→ 0, we see that achieving
√
o(l) dependence in the regret

is not possible efficiently given Conjecture 1.

In fact, since our reduction is done in polynomial time, any algorithm for online

local learning that does significantly better than the best algorithms for planted clique

will lead to new algorithms for planted clique. Specifically, if we let q = max(N, l, T ),

2We use N in this section to denote the size of S, i.e. the number of items that the online local
learning algorithm must label with labels in [l]
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then if we achieve an OLL algorithm that runs in time qo(log q), we will obtain planted

clique algorithms that run in time no(logn).

We sketch the proof here and give a full proof in Appendix B.1.

Proof Sketch. Given some G, we want to determine whether it is G(n, 1/2) or

G(n, 1/2, k) for k = n1/2−ε. We construct an instance of OLL such that with

probability 4
5
, the loss will be below some threshold in the planted case and above it

in the non-planted case for an algorithm that achieves regret O(
√
Nl1−αT ).

We first randomly partition G into N = n
l

clusters C1, ..., CN , each containing l

vertices, where l is set such that k = Θ(n
l

log n
l
) = Θ(N logN). The set of items

for OLL will be the set of N clusters, and the label set size will still be l. Then

we run T =
(
N
2

)
rounds of OLL, one for each pair of clusters. For each cluster, we

associate each of the l vertices of that cluster with one of the l labels of the label set.

Note that this means that a fixed labeling of the clusters corresponds to picking one

vertex from each cluster. Then in a given round of our reduction, when comparing

two clusters (Ci, Cj), the loss function for a label pair (a, b) will be 0 if the vertex in

Ci corresponding to label a has an edge to the vertex in Cj corresponding to label b

and 1 if there is no such edge.

In the non-planted case, each edge exists independently with probability 1/2, so

any algorithm’s expected loss is T/2. Moreover, due to Chernoff bounds, we can get

that the loss will be at least T/4 with high probability.

In the planted case, since there are N clusters and N logN clique vertices, each

cluster will have at least one clique vertex with high probability. Then by picking one

clique vertex from each cluster, we obtain a fixed labeling of the clusters that achieves

0 loss. Then by Markov, we can get that the loss in the planted case is O(
√
Nl1−αT )

with probability 1
c

for any constant c.
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Simply plugging in the parameters shows that
√
Nl1−αT � T/4, which completes

the proof.

3.3 Planted dense subgraph

The planted dense subgraph problem is a generalization of the planted clique problem,

making it an even stronger basis for computational lower bounds. In the planted dense

subgraph problem, we must distinguish between two graphs on n vertices: G(n, p)

and G(n, p, k, q). G(n, p, k, q) is generated by taking a random subset of k vertices and

putting edges between those vertices independently with probability q, then adding

all other possible edges independently with probability p. One significant way in

which the planted dense subgraph setting differs from planted clique is that the edge

densities p and q are usually considered to be asymptotic functions of n and are much

smaller than in the planted clique case. Moreover, a wider setting of the parameters

p, q, k are not known to have polynomial time algorithms.

Unlike for planted clique, planted dense subgraph is not even known to have

quasipolynomial time algorithms. We have the following conjecture:

Conjecture 2. Given a graph G sampled either from G(n, p) or G(n, p, k, q), where

k = n1/2−ε′ for ε′ = Ω(1) and k = nΩ(1); p = n−α for α = Ω(1), α ≤ 1
2
; q = k−α−ε for

ε = Ω(1); and p = o(q), there is no polynomial time algorithm that can decide which

ensemble G was sampled from with probability 4
5
.3

The best algorithms for solving planted dense subgraph come from Bhaskara et al.

(2010), who give an algorithm that can solve planted dense subgraph in time nk
Θ(ε)

,

which for k polynomial in n gives a running time of 2n
Θ(ε)

. Their algorithm involves

3Again, the constant is arbitrary and need only be bounded away from 1
2 .
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counting certain constant-sized trees in the graph, which will appear with high prob-

ability only in the planted case. Note that their algorithm would run in exponential

time for the parameters stated in Conjecture 2.

The planted dense subgraph problem is closely related to the Densest k-subgraph

(DkS) problem, in which one attempts to find the densest subgraph of size k in some

graph G. Experts believe that instances of planted dense subgraph present a natural

barrier for improved approximation algorithms for DkS. Obtaining an efficient o(n1/4)

approximation for DkS would imply algorithms that can efficiently solve planted

dense subgraph for certain parameter regimes. The best known efficient algorithms

for approximating DkS are obtained by Bhaskara et al. (2010), who get an efficient

O(n1/4+ε) approximation for DkS. Bhaskara et al. (2012) show an integrality gap for

DkS of Ω̃(n1/4) for Ω( logn
log logn

) rounds of the Sherali-Adams hierarchy, and their result

applies in the parameter regimes of Conjecture 2. Similar conjectures have also been

used to prove hardness of financial derivatives (Arora et al., 2010) and as a basis for

public key cryptography (Applebaum et al., 2010).

3.4 Reduction from planted dense subgraph to on-

line local learning

We give a reduction from planted dense subgraph to OLL that gives the following

theorem:

Theorem 7. Let ε = Ω(1), α = Ω(1), k = n1/2−ε′ for ε′ = Ω(1), k = nΩ(1) (that is, the

parameters satisfy the conditions in Conjecture 2). If there exists a polynomial time
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algorithm that obtains regret4 O(
√
NlβT ) for

β = 2
(1/2− ε′)(−α− ε+ 1

2
)− ω

(
1

logn

)
1/2 + ε′

(3.4.1)

then one can distinguish G(n, p) and G(n, p, k, q) with probability 4
5

in polynomial time

for p = n−α, k = n1/2−ε′ , q = k−α−ε.

As in the planted clique case, we can see that in the limit as ε, α, ε′ → 0, we have that

achieving
√
o(l) dependence in the regret is not possible efficiently given Conjecture

2.

As in the planted clique case, since our reduction is done in polynomial time,

any algorithm for online local learning that does significantly better than the best

algorithms for planted dense subgraph will lead to new algorithms for planted dense

subgraph. Namely if we let q = max(N, l, T ), then if we achieve an OLL algorithm

that runs in time 2q
o(1)

, we will obtain planted dense subgraph algorithms that run in

time 2n
o(1)

, which is better than the current state of the art.

We sketch the proof here, which mirrors the construction for the planted clique

setting. The full proof is in Appendix B.2.

Proof sketch. The reduction to planted dense subgraph is essentially the same as

for planted clique. Given some G, we want to determine whether it is G(n, p) or

G(n, p, k, q) for appropriate settings of the parameters p, k, q. We will use payoffs

instead of losses in this section for convenience. The setup is entirely equivalent, and

regret is defined as the difference between the payoff of the best fixed labeling and

the expected payoff of the algorithm. We construct an instance of OLL such that

4As in the planted clique section, we use N to denote the size of S, i.e. the number of items that
the online local learning algorithm must label with labels in [l]
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with probability 4
5
, the payoff will be above some threshold in the planted case and

below it in the non-planted case for an algorithm that achieves regret O(
√
NlβT ).

We first randomly partition G into N = n
l

clusters C1, ..., CN , each containing l

vertices, where l is set such that k = 10N .5 The set of items for OLL will be the set

of N clusters, and the label set size will still be l. Then we run T =
(
N
2

)
rounds of

OLL, one for each pair of clusters. For each cluster, we associate each of the l vertices

with one of the l labels. Note that this means that a fixed labeling corresponds to

picking one vertex from each cluster. Then in a given round of our reduction, when

comparing two clusters (Ci, Cj), the payoff function for a label pair (a, b) will be 1 if

the vertex in Ci corresponding to label a has an edge to the vertex in Cj corresponding

to label b and 0 if there is no such edge.

In the non-planted case, each edge exists with independently probability p, so any

algorithm’s expected payoff is pT . Moreover, due to Chernoff bounds, we can get

that the payoff will be at most pT + 5
√
pT with high probability.

In the planted case, consider the event that cluster i does not have a clique vertex.

This occurs with probability (1− 1
N

)k = (1− 1
N

)10N ≤ e−10. Then the total number of

clusters without a clique vertex will be below some constant fraction of N with good

probability due to linearity of expectation and Markov. Thus, we know that cN of

the clusters have a clique vertex for some constant c, so a fixed labeling that includes

these clique vertices will get expected payoff q over
(
cN
2

)
rounds. Then the expected

payoff of the algorithm is at least:

q

(
cN

2

)
−O(

√
NlβT ) (3.4.2)

5This setting of k gives a slightly tighter reduction than setting k = N logN . A similar change
in the planted clique case would also yield a better dependence on α for ε.
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We can use Markov to show that with good probability, the algorithm’s performance

will be no less than q
(
cN
2

)
−O(

√
NlβT ). Then since p = o(q), we simply need to show

that
√
NlβT � q

(
cN
2

)
to get that the payoff of the algorithm will be asymptotically

different in the planted versus non-planted cases. Plugging in the settings for each

parameter gives the result.
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Chapter 4

Applications and related work

4.1 Regret bounds for specific online learning

problems

4.1.a Online max cut

In the online max cut setting, in each round the learner receives a pair of vertices

(vi, vj) ∈ V , where |V | = n and must predict “cut” or “not cut”. Then nature gives

an answer of “cut” or “not cut” and assigns loss accordingly. The goal is to achieve

low regret with respect to the best cut in the graph.

We can model this as an online local learning problem for l = 2, i.e. we label each

vertex according to what side of the cut it is on. Our predictions are a probability

distribution over four outcomes, where assigning both vertices the same label corre-

sponds to a prediction of “not cut” and assigning different labels corresponds to a

prediction of “cut”. Then our regret in this case is O(
√
nT ), which is optimal for any

online max cut algorithm.
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4.1.b Online gambling

In the online gambling setting, in each round the learner receives a pair of teams

(xi, xj) from some set of n teams and the learner must predict which team will win,

after which nature provides the answer. The goals is to achieve low regret with respect

to the best fixed permutation of the teams, i.e. the ith team will beat the jth team iff

i < j.

We can model this as an online local learning problem for l = n, where we label

each team with a number in [n], so that given a pair of teams (xi, xj), the label pair

(a, b) corresponds to i winning iff a < b. In this case, we obtain regret O(
√
n2T ).

This is considerably worse than the Ω(
√
n log(n)T ) lower bound from Kleinberg et al.

(2010) and the O

(√
n log3(n)T

)
regret achieved by Hazan et al. (2012). The Hazan

et al. (2012) algorithm is discussed in more detail in section 4.2.

4.1.c Online collaborative filtering

In the online collaborative filtering setting, there is a set of n users and m items. In

each round, the learner receives a pair (x, y) ∈ [n]× [m] and must make a prediction

in {0, 1}, which represents whether user x likes item y or not.

With no further restrictions, this problem would be equivalent to doing nm sep-

arate prediction problems. However, people generally assume that similar users will

like similar movies, which should aid in prediction. To enforce this assumption, it is

often assumed that the n×m matrix being learned has low trace norm. An alternate

assumption could be that users are drawn from a set of k1 types, while movies are

drawn from a set of k2 types, where we assume k1 and k2 are much smaller than

n and m. Then to model this as an OLL problem, our set S will consist of the k1

types of users and the k2 types of movies, so |S| = k1 + k2. We will have two labels,
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corresponding to liking or not liking, and the loss will just be 1 for the incorrect label

and 0 for the correct label. This gives regret O(
√

(k1 + k2)T ) compared to a perfect

labeling.

4.2 Related work

The OLL framework closely resembles previous work by Hazan et al. (2012), which

examines online matrix prediction (OMP) problems. The online matrix prediction

setting proceeds in rounds, and in each round the learner receives some pair (it, jt) ∈

[m] × [n] and gives a prediction in [−1, 1]. The learner then receives a loss function

lt : [−1, 1] → R. In this framework, the learner competes against a comparison

class of matrices W ⊆ [−1, 1]m×n. In particular, the authors focus on classes of

matrices that are (β, τ)-decomposable, for which they give an algorithm that achieves

Õ(
√
βτT ) regret1 for any class of (β, τ)-decomposable matrices. A matrix M is (β, τ)-

decomposable if sym(M) = P − N ,2 where P and N are PSD, the diagonal entries

of P and N are bounded by β, and tr(P ) + tr(N) ≤ τ . Roughly, finding a good

(β, τ)-decomposable class of matrices can be thought of as finding a comparison class

of matrices with low trace norm.

Both the OLL framework and the OMP framework can be used to solve similar

problems, and neither is strictly better than the other. For online max cut, the OLL

framework achieves the optimal O(
√
nT ) regret because there are a constant number

of labels, while the OMP framework achieves O(
√
nT log n) regret, which is tight for

the framework.

1The Õ suppresses polylog factors
2sym(M) is defined as M for symmetric M and as the matrix

(
0 M

Mᵀ 0

)
for non symmetric M .
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Hazan et al. (2012) use a Matrix Multiplicative Weights (MMW) algorithm, which

can be thought of as doing FTRL with the von Neumann entropy as a regularizer. In

the case of online max cut, the log determinant appears to be a better regularizer.

For the case of online gambling, the OLL framework achieves only O(
√
n2T ) re-

gret at best, while the MMW algorithm that achieves O
(√

n log3 nT
)

regret. The

poor performance of OLL is due to the fact that n labels are used, which essentially

corresponds to using a hypothesis class that is larger than necessary. On the other

hand, Hazan et al. (2012) found a more succinct class of hypothesis matrices that are

(log n, n log n)-decomposable, leading to the improved performance bounds.

For the online collaborative filtering setting, the OLL framework has no way

to leverage the usual assumption of low trace norm for the predicted matrix. The

algorithm by Hazan et al. (2012) achieves O(
√
τn1/2 log(n)T ) regret for matrices of

trace norm at most τ , where it is assumed that m ≤ n without loss of generality. The

OLL framework can function under a different assumption of a limited set of k1 types

of users and k2 types of movies, which gives regret O(
√

(k1 + k2)T ).

In general, to use the OMP framework, one must find an appropriate (β, τ)-

decomposable class of matrices. In problems where a good (β, τ)-decomposable class

can be found, the MMW algorithm does well. On the other hand, in the online local

learning framework, the hypothesis class is derived in a simple way from the problem

statement. As such, the OLL algorithm performs poorly for certain problems where

important structure is ignored. Nonetheless, for problems that fall naturally into a

labeling formulation, OLL provides a simple way to obtain good regret.
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Chapter 5

Open Problems

There are several open problems relating to OLL. OLL deals with predictions over

pairs of items–this may be expanded to predictions over r-tuples of items. Moreover,

our lower bounds do not preclude inefficient algorithms that achieve better regret.

Finally, it is still unclear how to reconcile the difference in performance of the log

determinant compared to other regularizers on various problems.

5.1 Predictions over r-tuples

In the OLL framework as stated, the learner receives pairs of items in each round.

One might want to extend this framework to cover r-tuples of items. This can be

done trivially with the current OLL algorithm by considering sets of size d r
2
e as items,

thus increasing the item set size to nd
r
2
e and increasing the label set size to ld

r
2
e, which

will give regret O(
√
nd

r
2
eld

r
2
eT ). In the case of constant size label set, we get regret

O(
√
nd

r
2
eT ).

Christiano (2014b) shows a lower bound in this setting, namely that a constant

number of rounds of the Lasserre hierarchy of SDP relaxations cannot achieve regret
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o(
√
n
r
2T ) for a constant size label set. Moreover, he shows that an algorithm that

achieves regret O(
√
cT ) would be able to solve planted constraint satisfaction prob-

lems using c clauses. Since the current best algorithms require n
r
2 clauses to solve

planted constraint satisfaction problems, this gives further evidence that o(
√
n
r
2T )

regret may be intractable (Feldman et al., 2013b).

5.2 Subexponential algorithms for online local

learning

The lower bounds we provided for OLL are based on hardness of planted clique

and planted dense subgraph. However, there exist subexponential algorithms for

planted dense subgraph, which means that there could exist subexponential time

algorithms that solve OLL with better regret than O(
√
nlT ). We know that running

the exponential time experts algorithm gives O(
√
n log(l)T ) regret, but it is open as

to whether there exist subexponential time algorithms that have better regret than

the polynomial time algorithms for OLL.

5.3 Combining regularizers

Hazan et al. (2012) obtain close to optimal regret for the online gambling problem

using the von Neumann entropy as a regularizer. It is open as to what the best

regularizer is for particular online prediction problems. Hazan et al. (2012) and

Christiano (2014a) also optimize over different convex bodies, which are tuned to be

appropriate for the regularizers they chose respectively. Nonetheless, it is possible

that their two frameworks can be combined somehow to obtain better regret, or
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at least to obtain optimal regret on a wider array of problems using some unified

algorithm.
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Chapter 6

Conclusion

We presented matching upper and lower bounds for the online local learning setting,

establishing the capabilities and limitations for algorithms in this setting. The upper

bound involved improving the analysis of Christiano’s algorithm using the Follow-

the-Regularized-Leader framework. The lower bound relied on a reductions from

the planted clique problem and the planted dense subgraph problem. We presented

hardness conjectures for these two problems as well as evidence that these conjectures

are true. We also compared the online local learning framework to the related online

matrix prediction setting by Hazan et al. (2012), which achieves better regret bounds

for certain problems. Finally, we discussed several open problems remain in the online

local learning framework.
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Appendix A

Upper bound proofs

A.1 Sketch of Christiano (2014a) bound on λ

Here we sketch the bound on the strong convexity parameter λ in Christiano (2014a).

Recall that λ is defined as follows:

λ = max
t,x∈K

fᵀ
t [∇2R(x)]−1ft (A.1.1)

Christiano (2014a) proves that λ ≤ l2, where l is the size of the label set in the OLL

setting.

For his approach, he treats the regularizer as concave instead of convex and uses

the following modified version of Theorem 1, which uses an alternate characterization

of strong concavity, where γ is equivalent to 1
λ
:

Theorem 8 (Christiano (2014a)). Suppose that R is a strongly concave regularizer

bounded between 0 and D on some convex body K. Moreover, suppose that whenever
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|Losst(A)− Losst(A
′)| ≥ δ for A,A′ ∈ K:

R(εA+ (1− ε)A′) ≥ εR(A) + (1− ε)R(A′) + ε(1− ε)γδ2 (A.1.2)

Then FTRL using R as a regularizer over K achieves regret O
(√

DT
γ

)
.

His proof consists of several parts. Throughout, he uses the interpretation of

log det(Σ) as the differential entropy of a Gaussian with covariance matrix Σ. Let us

define the Gaussians G1 and G2 with covariance matrices Σ1 = lA+I and Σ2 = lA′+I.

First, he argues that if |Losst(A) − Losst(A
′)| ≥ δ, then one of the second-order

moments will differ substantially between G1 and G2, which he shows implies that

the total variation distance between G1 and G2 is also large, namely Ω( δ
l
). Then he

uses a standard strong concavity result about the differential entropy that shows that

given probability distributions P and Q with total variation distance ∆,

H(εP + (1− ε)Q) ≥ εH(P ) + (1− ε)Q+ ε(1− ε)∆2 (A.1.3)

where H is the differential entropy. Using this result for ∆ = δ
l

gives the condition

in Theorem 8 for γ = 1
l2

.

A.2 Proofs for lemmas in section 2.3

For completeness, we replicate the bound on the diameter of D from Christiano

(2014a).

Lemma 4. For the log determinant regularizer R over K, we have D ≤ nl, where

D = max
x1,x2∈K

|R(x1)−R(x2)|
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as defined in Theorem 1.

Proof. Since all A ∈ K are positive semidefinite, the eigenvalues of lA + I are all at

least 1, so det(lA+ I) ≥ 1 and log det(lA+ I) ≥ 0. Next, we know that tr(A) ≤ n, so

tr(lA+I) ≤ 2nl. Given this trace condition, det(lA+I) is maximized if all eigenvalues

are equal, that is, if lA = I. Equivalently, we could use the fact log det(B) ≤ tr(B−I)

for any PSD matrix B. Then log det(lA+ I) ≤ log det(2I) = log(2nk) = nl.

Lemma 5. The inverse Hessian H−1 of the log determinant regularizer has the fol-

lowing form:

H−1
(w,x),(y,z) = −l−2(lA+ I)y,x(lA+ I)w,z

for all x,w, y, z ∈ S × L.

Before we get into the proof of Lemma 5, we will need to prove the following

lemma:

Lemma 9. Let H = ∇2R(A) be the Hessian of the log determinant regularizer R(A).

Then H has the following form:

H(w,x),(y,z) = −l2(lA+ I)−1
x,y(lA+ I)−1

z,w

for all w, x, y, z ∈ S × L.

Proof. Let X = lA+ I, Z = detX, and w, x, y, z ∈ S × l. Then we can compute the

first order partial derivatives:

∂R(A)

∂Aw,x
=

1

Z

∂Z

∂Aw,x
(A.2.1)

Now we use Jacobi’s formula (eg. from Magnus and Neudecker (1995)):
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Lemma 10 (Jacobi’s formula). ∂ det(B)
∂Bi,j

= det(B)B−1
j,i

Plugging this into (A.2.1) gives:

∂R(A)

∂Aw,x
=

1

Z
(ZX−1

x,w)l = lX−1
x,w (A.2.2)

Next, we compute the entries of the Hessian:

∂2R(A)

∂Aw,x∂Ay,z
= l

∂X−1
x,w

∂Ay,z
(A.2.3)

We use the fact that for an invertible matrix B, ∂B−1

∂t
= −B−1 ∂B

∂t
B−1. Thus,

∂X−1
x,w

∂Ay,z
= −

(
X−1 ∂X

∂Ay,z
X−1

)
x,w

(A.2.4)

Let Y = ∂X
∂Ay,z

. Then,

∂2R(A)

∂Aw,x∂Ay,z
= −l(X−1Y X−1)x,w = −l

∑
p

(X−1Y )x,pX
−1
p,w (A.2.5)

= −l
∑
p

(∑
q

X−1
x,qYq,p

)
X−1
p,w (A.2.6)

Then since the only nonzero entry of Y is Yy,z = l, we get:

∂2R(A)

∂Aw,x∂Ay,z
= −l2X−1

x,yX
−1
z,w (A.2.7)

Proof of Lemma 5. Let w, x, y, z ∈ S×L and let X = lA+I. To prove the lemma, we

simply need to verify that H−1H = I, which means that (H−1H)(w,x),(y,z) = δ(w,x),(y,z),
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where δa,b = 1 if a = b and 0 otherwise.

(H−1H)(w,x),(y,z) =
∑
p,q

H−1
(w,x),(p,q)H(p,q),(y,z) (A.2.8)

=
∑
p,q

(
−l−2Xp,xXw,q

) (
−l2X−1

q,yX
−1
z,p

)
(A.2.9)

=
∑
p

X−1
z,pXp,x

∑
q

Xw,qX
−1
q,y (A.2.10)

= δx,zδw,y = δ(w,x),(y,z) (A.2.11)
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Appendix B

Lower bound proofs

B.1 Planted clique lower bound proof

Theorem 6. If there exists a polynomial time online local learning algorithm that

achieves O(
√
Nl1−αT ) regret1 for some 0 < α < 1, then there exists a polynomial

time algorithm to distinguish between G(n, 1/2) and G(n, 1/2, k) for k = n1/2−ε and

ε = α
16

with probability 4
5
.

Proof. We are given a graph G and an OLL algorithm A that achieves O(
√
Nl1−αT )

regret, and we must now determine if G is G(n, 1/2) or G(n, 1/2, k) for k = n1/2−ε. We

will construct an instance of OLL such that with probability at least 4
5

the following

holds: we can find a threshold such that if the loss is below that threshold, then the

graph is G(n, 1/2, k), otherwise it is G(n, 1/2).

We first partition the vertices of G into N = n
l

clusters C1, ..., CN , each of size l,

where l is chosen such that k = ck
n
l

log n
l

= ckN logN for some constant ck.
2 For each

cluster Ci, number the vertices in that cluster arbitrarily as vi1, ..., v
i
l . We will now

1We use N in this section to denote the size of S, i.e. the number of items that the online local
learning algorithm must label with labels in [l]

2We can assume wlog that l divides n.
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play T =
(
N
2

)
rounds of OLL, one for each pair of clusters (Ci, Cj). In each round, we

give A a pair (Ci, Cj) and the loss for a pair of labels (a, b) is 0 if (via, v
j
b) is an edge

in G and 1 otherwise.

In the non-planted case, G = G(n, 1/2). Then for all i, j ∈ [N ] and a, b ∈ [l], the

edge (via, v
j
b) is in the graph with probability 1/2, so any algorithm will have expected

loss of T/2. Moreover, the algorithm’s loss is simply the sum of T coin flips, so by

Chernoff bounds we get:

Pr[Loss ≤ T/2− T/4] ≤ e−
2(T/4)2

T = e−
T
8 (B.1.1)

So the algorithm’s loss is at least T/4 with high probability.

Now consider the planted case. We have N clusters and Θ(N logN) planted clique

vertices. Since the partition was chosen randomly, a coupon collector argument im-

plies that with high probability, each cluster will contain at least one clique vertex.

Call this event E0. If E0 occurs, then for each cluster Ci, we can identify a repre-

sentative clique vertex viai contained in Ci (if there are multiple clique vertices in Ci,

pick one arbitrarily). If we consider the clique vertices {v1
a1
, ..., vNaN}, we have a fixed

labeling, corresponding to labeling cluster Ci with label ai. This labeling will have 0

loss over the
(
N
2

)
rounds of our reduction.

Since A achieves regretO(
√
Nl1−αT ), we know that if E0 occurs, then A’s expected

loss in the planted case is at most cl
√
Nl1−αT for some constant cl > 0. Moreover,

by Markov’s inequality, we get:

Pr[Loss(A) ≥ 10cl
√
nl1−αT ] ≤ 1

10
(B.1.2)
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Then to distinguish between the two cases with probability 4
5
, we simply need the

loss in each case to be different asymptotically with probability at least 4
5
. As we

have shown, the loss in the planted case is at most 10cl
√
Nl1−αT with probability at

least 1
10

, while the loss in the non-planted case is at least T/4 with high probability.

Then we want the following to hold:

10cl
√
Nl1−αT = o(T/4) (B.1.3)

⇐⇒ Nl1−α = o(T ) (B.1.4)

Let us look at the left side of this equation. We substitute parameters to get every-

thing in terms of N . Since k = n1/2−ε and k = ckN logN , we get n = (ckN logN)
1

1/2−ε

and l = n
N

= (ckN logN)
1

1/2−ε

N
. Then the left side of (B.1.4) becomes:

N

(
(ckN logN)

1
1/2−ε

N

)1−α

= Nα(N logN)
1−α

1/2−ε ≤ NαN (1−α)(2+8ε)(logcN) (B.1.5)

for c = 2(1 + 4ε), where the inequality is due to the fact that 1
1/2−ε ≤ 2(1 + 4ε) for

ε < 1/2. Then we substitute in ε = α
16

to get:

N (1−α)(2+α/2)+α(logcN) = N2−α/2−α2/2(logcN) (B.1.6)

Since α > 0 and T =
(
N
2

)
= Θ(N2), we know that (B.1.6) is o(T ), which completes

the proof.

B.2 Planted dense subgraph lower bound proof

Theorem 7. Let ε = Ω(1), α = Ω(1), k = n1/2−ε′ for ε′ = Ω(1), k = nΩ(1) (that is, the

parameters satisfy the conditions in Conjecture 2). If there exists a polynomial time
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algorithm that obtains regret3 O(
√
NlβT ) for

β = 2
(1/2− ε′)(−α− ε+ 1

2
)− ω

(
1

logn

)
1/2 + ε′

(B.2.1)

then one can distinguish G(n, p) and G(n, p, k, q) with probability 4
5

in polynomial time

for p = n−α and q = k−α−ε.

Proof. This proof will closely mirror the setup for the planted clique case. We are

given a graph G and an OLL algorithm A that achieves O(
√
NlβT ) regret, and we

must now determine if G is G(n, p) or G(n, p, k, q) for k = n1/2−ε′ .

We will use payoffs instead of losses in this section for convenience. The setup

for payoffs is entirely equivalent to the setup for losses, and regret is defined as how

much less an algorithm’s expected payoff is compared to the payoff of the best fixed

labeling.

We will construct an instance of OLL such that with probability at least 4
5

the

following holds: we can find a threshold such that if the payoff is above that threshold,

then the graph is G(n, p, k, q), otherwise it is G(n, p, k, q).

We first partition the vertices of G into N = n
l

clusters C1, ..., CN , each of size

l, where l is chosen such that k = 10N.4 For each cluster Ci, number the vertices in

that cluster arbitrarily as vi1, ..., v
i
l . We will now play T =

(
N
2

)
rounds of OLL, one

for each pair of clusters (Ci, Cj). In each round, we give A a pair (Ci, Cj) and the

payoff for a pair of labels (a, b) is 1 if (via, v
j
b) is an edge in G and 0 otherwise.

In the non-planted case, G = G(n, p). Then for all i, j ∈ [N ] and a, b ∈ [l], the

edge (via, v
j
b) is in the graph with probability p, so any algorithm will have expected

3As in the planted clique section, we use N to denote the size of S, i.e. the number of items that
the online local learning algorithm must label with labels in [l]

4We use k = Θ(N) instead of k = Θ(N logN) because the former achieves a slightly tighter
reduction in the parameters of the problem. One could make a similar change to the proof for
planted clique to get a slightly better dependence on α for ε.
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payoff of pT . Moreover, the algorithm’s payoff is simply the sum of T coin flips, so by

Chernoff bounds we get that the payoff is at most pT + 5
√
pT with high probability.

Now consider the planted case. We have N clusters and Θ(N) planted clique

vertices. Let Ii be the indicator random variable that is 1 if a clique vertex does not

fall in cluster i and 0 otherwise. Then we have:

E

[
N∑
i=1

Ii

]
= N

(
1− 1

N

)k
= N

(
1− 1

N

)10N

≤ Ne−10 (B.2.2)

Then by Markov, we get:

Pr

[
N∑
i=1

Ii ≥
N

10

]
≤ Ne−10

N
10

≤ 1

10
(B.2.3)

Thus, with probability 9
10

, at least 9
10
N clusters contain a clique vertex. Call this

event E0. In this case, a fixed labeling that uses all of these clique vertices will have

expected payoff q over
(

9N/10
2

)
rounds of our reduction.

Let OPT be the payoff of the best fixed labeling. We know the algorithm’s regret

is at most cl
√
NlβT of OPT for some constant cl > 0. Let us now show that with

probability 9
10

, the algorithm has payoff at least OPT − 10cl
√
NlβT . Call this event

E1. Let X = OPT − Payoff(A). Then,

E[X] = OPT − E[Payoff(A)] = Regret ≤ cl
√
NlβT (B.2.4)

We also know that E[X] = E[X|X ≥ 0] + E[X|X < 0]. Payoff(A) can only be less

than OPT for X ≥ 0. Thus, if we use E[X|X ≥ 0] in Markov’s inequality, we get:

Pr[X ≥ 10cl
√
NlβT |X ≥ 0] ≤ 1

10
(B.2.5)
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Thus, with probability at least 81
100

, E0 and E1 occur, so the algorithm gets payoff

at least q
(

9N/10
2

)
− 10cl

√
NlβT . Then to distinguish between the planted and non-

planted cases with probability 4
5
, we simply need the payoff in each case to be different

asymptotically with probability at least 4
5
. That is, we want the following to hold:

pT + 5
√
pT � q

(
9N/10

2

)
− 10cl

√
NlβT (B.2.6)

Since p = o(q) and T =
(
N
2

)
, we simply need to show:

√
NlβN2 � o(qN2) (B.2.7)

Or alternately, we can show:

lβ/2 � o(q
√
N) (B.2.8)

Let us look at the left side of this equation. We substitute parameters to get ev-

erything in terms of n. Since k = 10N and k = n1/2−ε′ , we get l = n
N

= 10n
n1/2−ε′ =

10n1/2+ε′ . Meanwhile, q = k−α−ε = n(1/2−ε′)(−α−ε). (B.2.8) is true if:

(
n1/2+ε′

)β/2
= o

(
n(1/2−ε′)(−α−ε)n(1/2−ε′)/2

)
(B.2.9)

Then since nω( 1
logn

) = ω(1), it suffices to show:

(1/2 + ε′)
β

2
= (1/2− ε′)(−α− ε) +

1

2
(1/2− ε′)− ω

(
1

log n

)
(B.2.10)

which is easily shown to be true for our setting of β.
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