

Last-iterate convergence rates for min-max optimization

Jacob Abernethy, Kevin A. Lai, Andre Wibisono Georgia Institute of Technology

PROBLEM SETTING: MIN-MAX OPTIMIZATION

An unconstrained min-max optimization problem is written as:

 $\min_{x_1 \in \mathbb{R}^d} \max_{x_2 \in \mathbb{R}^d} g(x_1, x_2)$

where $g: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ is a smooth function.

Goal: Find $(x_1^*, x_2^*) \in \mathbb{R}^d \times \mathbb{R}^d$ such that $\forall x_1 \in \mathbb{R}^d$ and $\forall x_2 \in \mathbb{R}^d$:

 $g(x_1^*, x_2) \leq g(x_1^*, x_2^*) \leq g(x_1, x_2^*).$

• Classic result: Average iterate of no-regret algorithms like Simultaneous Gradient Descent/Ascent (SGDA) converges to a min-max in *convex*-

MAIN RESULT

We show that HGD achieves a linear rate under a novel "sufficiently bilinear" condition. This demonstrates a new setting where linear rates are possible.

concave problems.

- Modern applications such as GANs involve non-convex min-max problems, for which averaging no longer gives the same guarantees.
- On the other hand, *last-iterate* guarantees transfer more readily to the non-convex setting.

Question: What last-iterate convergence <u>rates</u> are possible for the convex-concave setting?

LAST-ITERATE CONVERGENCE

Last-iterate convergence is tricky!

- [MPP18] All FTRL algorithms provably do not have last-iterate convergence in many cases \Rightarrow standard algorithms like SGDA can't be used.
- SGDA diverges even in the bilinear case where $g(x_1, x_2) = x_1^{T} x_2$ (see Figure 1).

Figure 1: SGDA diverges in bilinear games

Figure 1: SGDA vs. HGD for $g(x_1, x_2) = f(x_1) + 10x_1^T x_2 - f(x_2)$ where $f(x) = \log(1 + e^x)$. SGDA slowly circles away from the min-max, while HGD goes directly to the min-max.

<u>Main Theorem</u>: For all $(x_1, x_2) \in \mathbb{R}^d \times \mathbb{R}^d$, let • $\lambda\left(\left(\nabla_{x_1x_1}^2 g\right)^2\right) \in [\rho^2, L^2], \ \lambda\left(\left(\nabla_{x_2x_2}^2 g\right)^2\right) \in [\mu^2, L^2]$ • $\sigma\left(\nabla_{x_1x_2}^2 g(x_1, x_2)\right) \in [\gamma, \Gamma] \text{ for } \gamma > 0.$ Assume the following "sufficiently bilinear" condition holds: $(\gamma^2 + \rho^2)(\gamma^2 + \mu^2) - 4L^2\Gamma^2 > 0.$ Then HGD with $\eta = 1/L_{\mathcal{H}}$ has the following convergence rate: $\|\xi(x^{(k)})\| \le \left(1 - \frac{(\gamma^2 + \rho^2)(\gamma^2 + \mu^2) - 4L^2\Gamma^2}{(2\gamma^2 + \rho^2 + \mu^2)L_{\text{TC}}}\right)^{k/2} \|\xi(x^{(0)})\|$

We also show results for a stochastic variant of HGD provided that the stochastic gradient is bounded over all iterates.

Existing results are limited

- Many recent works give local or asymptotic convergence results, including in nonconvex-nonconcave settings.
- Global convergence rates have only been proven in very limited settings:
- [LS18] show convergence in the bilinear case for various algorithms as well as convergence for SGDA in the strongly convex-strongly concave case.
- [DH19] show convergence for SGDA in a specific case where *g* is strongly convex in x_1 and concave in x_2 .

Prior to our work, no global last-iterate convergence rates existed beyond bilinear or strongly convex/PL settings!

Note: Concurrent work by [AMLJG19] shows global linear convergence rates for various algorithms in a very similar setting to ours.

CONVERGENCE DEFINITION AND ASSUMPTIONS

For
$$x = (x_1, x_2)$$
, let $\xi(x) \coloneqq \left(\nabla_{x_1} g(x_1, x_2), -\nabla_{x_2} g(x_1, x_2) \right)^{\mathsf{T}}$.

SUFFICIENTLY BILINEAR CONDITION

The "sufficiently bilinear" condition is

 $(\gamma^2 + \rho^2)(\gamma^2 + \mu^2) - 4L^2\Gamma^2 > 0.$

- This is a property of $\nabla^2 g$ and is satisfied if $\gamma = \Gamma$ and $\gamma \ge 4L$.
- Note that in the bilinear case $g(x_1, x_2) = x_1^T x_2$, so L = 0.
- Satisfied for functions $g(x_1, x_2) = f(x_1) 3Lx_1^T x_2 h(x_2)$ for L-smooth convex functions f and h with Lipschitz Hessian.

CONSENSUS OPTIMIZATION

Our results imply a linear convergence rate for some parameter regimes of the Consensus Optimization (CO) algorithm of [MNG17], defined as:

$$x^{(k+1)} = x^{(k)} - \eta \left(\xi(x^{(k)}) + \gamma \nabla \mathcal{H}(x^{(k)}) \right)$$

- [MNG17] show CO can train GANs effectively in practice for $\gamma = 10$.
- We show that CO with large enough γ converges at the same rate as HGD

<u>Assumption 1</u>: $\nabla^2 g$ is bounded and Lipschitz (i.e. g is sufficiently smooth).

<u>Assumption 2</u>: All critical points are min-maxes (true for convex-concave g). <u>Definition of Convergence</u>: We measure convergence rates in terms of $\|\xi\|$.

HAMILTONIAN GRADIENT DESCENT

As in [BRMFTG18], we define the Hamiltonian $\mathcal{H}(x) \coloneqq \frac{1}{2} \|\xi(x)\|^2$. Our main algorithm is **Hamiltonian Gradient Descent** (HGD), defined as:

 $x^{(k+1)} = x^{(k)} - \eta \nabla \mathcal{H}(x^{(k)})$

• Note that $\nabla \mathcal{H} = \nabla \xi^{\mathsf{T}} \xi$ and that under Assumption 1, \mathcal{H} is smooth over the algorithm's iterates. Let $L_{\mathcal{H}}$ be the smoothness constant of \mathcal{H} .

• HGD is a second-order algorithm, but can be implemented with Hessianvector products, which are as fast as gradients for neural networks.

(up to constants) and in the same settings.

ANALYSIS

We show that the Hamiltonian satisfies the Polyak-Łojasiewicz (PL) condition, which implies linear convergence of gradient descent.

Lemma: If $\nabla \xi \nabla \xi^{\top} \geq \alpha I$, then \mathcal{H} satisfies the PL condition with parameter α .

References:

- [AMLJG19] Azizian, Mitliagkas, Lacoste-Julien, and Gidel. A Tight and Unified Analysis of Extragradient for a Whole Spectrum of Differentiable Games. Preprint. 2019.
- [BRMFTG18] Balduzzi, Racaniere, Martens, Foerster, Tuyls, and Graepel. The mechanics of n-player differentiable games. In International Conference on Machine Learning (ICML), 2018.
- [DH19] Du and Hu. Linear convergence of the primal-dual gradient method for convex-concave saddle point problems without strong convexity. AISTATS 2019.
- [LS19] Liang and Stokes. Interaction matters: A note on non-asymptotic local convergence of generative adversarial networks. AISTATS 2019.
- [MPP18] Mertikopoulos, Papadimitriou, and Piliouras. Cycles in adversarial regularized learning. SODA 2018.
- [MNG17] Mescheder, Nowozin, and Geiger. The numerics of GANs. *NeurIPS* 2017.