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PROBLEM SETTING: MIN-MAX OPTIMIZATION MAIN RESULT

An unconstrained min-max optimization problem is written as:

min max g(xq, x,)
x1ERZ x,eR4

where g: REXR? — R is a smooth function.
Goal: Find (x],x;) € R*xXR? such that Vx; € R% and Vx, € R%:

g(x{, xZ) < g(XI,x;) < g(xl) x;)

* Classic result: Average iterate of no-regret algorithms like Simultaneous
Gradient Descent/Ascent (SGDA) converges to a min-max in convex-
concave problems.

* Modern applications such as GANs involve non-convex min-max problems,
for which averaging no longer gives the same guarantees.

* On the other hand, last-iterate guarantees transfer more readily to the
non-convex setting.

Question: What last-iterate convergence rates are possible for

the convex-concave setting?

LAST-ITERATE CONVERGENCE

Last-iterate convergence is tricky! 3 Figure 1: SGDA diverges in bilinear games

* [IMPP18] All FTRL algorithms provably do
not have last-iterate convergence in many
cases = standard algorithms like 1]
SGDA can’t be used.

* SGDA diverges even in the bilinear case
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where g(x{,%x,) = x{ x, (see Figure 1). ~

Existing results are limited 3 A B 5 i ; 3
* Many recent works give local or asymptotic convergence results, including
In honconvex-nonconcave settings.

* Global convergence rates have only been proven in very limited settings:

* [LS18] show convergence in the bilinear case for various algorithms as well
as convergence for SGDA in the strongly convex-strongly concave case.

* [DH19] show convergence for SGDA in a specific case where g is
strongly convex in x; and concave in x,.

Prior to our work, no global last-iterate convergence rates
existed beyond bilinear or strongly convex/PL settings!

Note: Concurrent work by [AMLIJG19] shows global linear convergence
rates for various algorithms in a very similar setting to ours.

-
For x = (xll xZ)l let g(x) — (Vxlg(xl; XZ), _vng('xll xZ)) .
Assumption 1: Vg is bounded and Lipschitz (i.e. g is sufficiently smooth).

Assumption 2: All critical points are min-maxes (true for convex-concave g).

Definition of Convergence: We measure convergence rates in terms of ||]|.

We show that HGD achieves a linear rate under a novel
“sufficiently bilinear” condition. This demonstrates a new
setting where linear rates are possible.

Simltéltaneous Gradient Desrc(e,n’t/Ascent vs. Hamiltonian Gradient Descent -== SGDA
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Figure 1: SGDA vs. HGD for g(x1,x5) = f(x;1) + 10x{x, — f(x;) where f(x) = log(1 + e%).
SGDA slowly circles away from the min-max, while HGD goes directly to the min-max.

Main Theorem: For all (x4, x,) € RZxRY, let
2 2

* 0 (Vilng(xl,xz)) € [y,I'] fory > 0.

Assume the following "sufficiently bilinear” condition holds:
(v* + p?)(y?* + u*) — 4L°T* > 0.

Then HGD with n = 1 /L4, has the following convergence rate:

Hf(x(k))” < (1 (y2+p2)()/2+u2)—4[,2[‘2)k/2 Hé(x(O))H

(2y%+p%+pu?) Ly
We also show results for a stochastic variant of HGD provided that the
stochastic gradient is bounded over all iterates.

The “sufficiently bilinear” condition is
(¥* + p?)(y?* +u*) — 4L°T* > 0.
» This is a property of V4 g and is satisfied if y = 'and y = 4L.

» Note that in the bilinear case g(x{,x,) = x4 x5, so L = 0.

- Satisfied for functions g(x4,x,) = f(x;) — 3Lx{ x, — h(x,) for L-smooth
convex functions f and h with Lipschitz Hessian.

CONSENSUS OPTIMIZATION

Our results imply a linear convergence rate for some parameter regimes of
the Consensus Optimization (CO) algorithm of [MNG17], defined as:

x kD) = () _ p (g(xac)) n yv}[(xuo))

* [IMNG17] show CO can train GANs effectively in practice fory = 10.

* We show that CO with large enough y converges at the same rate as HGD
(up to constants) and in the same settings.

ANALYSIS

We show that the Hamiltonian satisfies the Polyak-tojasiewicz (PL)
condition, which implies linear convergence of gradient descent.

HAMILTONIAN GRADIENT DESCENT

As in [BRMFTG18], we define the Hamiltonian H (x) := % 1€ |2

Our main algorithm is Hamiltonian Gradient Descent (HGD), defined as:
x(k'l'l) — x(k) — nV%(x(k))

» Note that VH = V&' ¢ and that under Assumption 1, H is smooth over
the algorithm’s iterates. Let L4 be the smoothness constant of H.

Lemma: If VEVET = al, then H satisfies the PL condition with parameter «.
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* HGD is a second-order algorithm, but can be implemented with Hessian-
vector products, which are as fast as gradients for neural networks.



