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Last-iterate convergence rates for min-max optimization
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PROBLEM	SETTING:	MIN-MAX	OPTIMIZATION
An unconstrained min-max optimization problem is written as:

where 𝑔:ℝ$×ℝ$ → ℝ is a smooth function.

Goal: Find 𝑥(∗, 𝑥+∗ ∈ ℝ$×ℝ$ such that ∀𝑥( ∈ ℝ$ and ∀𝑥+ ∈ ℝ$:

𝑔 𝑥(∗, 𝑥+ ≤ 𝑔 𝑥(∗, 𝑥+∗ ≤ 𝑔 𝑥(, 𝑥+∗ .

• Classic result: Average iterate of no-regret algorithms like Simultaneous 
Gradient Descent/Ascent (SGDA) converges to a min-max in convex-
concave problems.
• Modern applications such as GANs involve non-convex min-max problems, 

for which averaging no longer gives the same guarantees.
• On the other hand, last-iterate guarantees transfer more readily to the 

non-convex setting.

LAST-ITERATE	CONVERGENCE

HAMILTONIAN	GRADIENT	DESCENT

MAIN	RESULT

We also show results for a stochastic variant of HGD provided that the 
stochastic gradient is bounded over all iterates.

CONSENSUS	OPTIMIZATION

SUFFICIENTLY	BILINEAR	CONDITION	

ANALYSIS
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CONVERGENCE	DEFINITION	AND	ASSUMPTIONS

Figure 1: SGDA vs. HGD for 𝑔(𝑥(, 𝑥+) = 𝑓(𝑥() + 10𝑥(6𝑥+ − 𝑓(𝑥+) where 𝑓(𝑥) = log(1 + 𝑒<). 
SGDA slowly circles away from the min-max, while HGD goes directly to the min-max.Question: What last-iterate convergence rates are possible for 

the convex-concave setting?

We show that HGD achieves a linear rate under a novel 
“sufficiently bilinear” condition. This demonstrates a new 

setting where linear rates are possible.

Main Theorem: For all 𝑥(, 𝑥+ ∈ ℝ$×ℝ=, let
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• 𝜎 ∇<@<C
+ 𝑔 𝑥(, 𝑥+ ∈ 𝛾, Γ for 𝛾 > 0.

Assume the following ”sufficiently bilinear” condition holds:
𝛾+ + 𝜌+ 𝛾+ + 𝜇+ − 4𝐿+Γ+ > 0.

Then HGD with 𝜂 = 1/𝐿ℋ has the following convergence rate:
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We show that the Hamiltonian satisfies the Polyak-Łojasiewicz (PL) 
condition, which implies linear convergence of gradient descent.

Lemma: If ∇𝜉∇𝜉6 ≽ 𝛼𝐼, then ℋ satisfies the PL condition with parameter 𝛼.As in [BRMFTG18], we define the Hamiltonian
Our main algorithm is Hamiltonian Gradient Descent (HGD), defined as:

• Note that ∇ℋ = ∇𝜉6𝜉 and that under Assumption 1, ℋ is smooth over 
the algorithm’s iterates. Let        be the smoothness constant of ℋ.
• HGD is a second-order algorithm, but can be implemented with Hessian-

vector products, which are as fast as gradients for neural networks.

𝑥(OQ() = 𝑥(O) − 𝜂∇ℋ(𝑥(O))

ℋ 𝑥 ≔ (
+
𝜉 𝑥 +.

For 𝑥 = (𝑥(, 𝑥+), let 

Assumption 1: ∇+𝑔 is bounded and Lipschitz (i.e. 𝑔 is sufficiently smooth).

Assumption 2: All critical points are min-maxes (true for convex-concave 𝑔).

Definition of Convergence: We measure convergence rates in terms of ‖𝜉‖.

𝜉 𝑥 ≔ ∇<@𝑔 𝑥(, 𝑥+ , −∇<C𝑔 𝑥(, 𝑥+
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.

Last-iterate convergence is tricky!
• [MPP18] All FTRL algorithms provably do

not have last-iterate convergence in many
cases ⇒ standard algorithms like
SGDA can’t be used.
• SGDA diverges even in the bilinear case 

where 𝑔 𝑥(, 𝑥+ = 𝑥(6𝑥+ (see Figure 1). 

Existing results are limited
•Many recent works give local or asymptotic convergence results, including 

in nonconvex-nonconcave settings.
• Global convergence rates have only been proven in very limited settings:
• [LS18] show convergence in the bilinear case for various algorithms as well 

as convergence for SGDA in the strongly convex-strongly concave case.
• [DH19] show convergence for SGDA in a specific case where 𝑔 is 

strongly convex in 𝑥( and concave in 𝑥+.

Note: Concurrent work by [AMLJG19] shows global linear convergence 
rates for various algorithms in a very similar setting to ours.

Figure 1: SGDA diverges in bilinear games

Prior to our work, no global last-iterate convergence rates 
existed beyond bilinear or strongly convex/PL settings!
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The “sufficiently bilinear” condition is 

• This is a property of ∇+𝑔 and is satisfied if 𝛾 = Γ and 𝛾 ≥ 4𝐿.
• Note that in the bilinear case 𝑔 𝑥(, 𝑥+ = 𝑥(6𝑥+, so 𝐿 = 0.
• Satisfied for functions 𝑔 𝑥(, 𝑥+ = 𝑓 𝑥( − 3𝐿𝑥(6𝑥+ − ℎ(𝑥+) for 𝐿-smooth 

convex functions 𝑓 and ℎ with Lipschitz Hessian.

𝛾+ + 𝜌+ 𝛾+ + 𝜇+ − 4𝐿+Γ+ > 0.

Our results imply a linear convergence rate for some parameter regimes of 
the Consensus Optimization (CO) algorithm of [MNG17], defined as:

• [MNG17] show CO can train GANs effectively in practice for 𝛾 = 10.
•We show that CO with large enough 𝛾 converges at the same rate as HGD 

(up to constants) and in the same settings.

𝑥(OQ() = 𝑥(O) − 𝜂 𝜉 𝑥 O + 𝛾∇ℋ 𝑥 O


